A unified approach to the Armendariz property of polynomial rings and power series rings
نویسندگان
چکیده
منابع مشابه
Properties of Armendariz Rings and Weak Armendariz Rings
We consider some properties of Armendariz and rigid rings. We prove that the direct product of rigid (weak rigid), weak Armendariz rings is a rigid (weak rigid), weak Armendariz ring. On the assumption that the factor ring R/I is weak Armendariz, where I is nilpotent ideal, we prove that R is a weak Armendariz ring. We also prove that every ring isomorphism preserves weak skew Armendariz struct...
متن کاملOn a generalization of central Armendariz rings
In this paper, some properties of $alpha$-skew Armendariz and central Armendariz rings have been studied by variety of others. We generalize the notions to central $alpha$-skew Armendariz rings and investigate their properties. Also, we show that if $alpha(e)=e$ for each idempotent $e^{2}=e in R$ and $R$ is $alpha$-skew Armendariz, then $R$ is abelian. Moreover, if $R$ is central $alpha$-skew A...
متن کاملAnti-archimedean Rings and Power Series Rings
We define an integral domain D to be anti-Archimedean if ⋂∞ n=1 a nD 6= 0 for each 0 6= a ∈ D. For example, a valuation domain or SFT Prüfer domain is anti-Archimedean if and only if it has no height-one prime ideals. A number of constructions and stability results for anti-Archimedean domains are given. We show that D is anti-Archimedean ⇔ D[[X1, . . .
متن کاملA Property of Ideals in Polynomial Rings
Every ideal in the polynomial ring in n variables over an infinite field has a reduction generated by n elements. Eisenbud and Evans [2] proved that every ideal in k[Xx,...,Xn] can be generated up to radical by n elements (where k is a field). Avinash Sathaye [7] and Mohan Kumar [5] proved a locally complete intersection in k[ Xv ..., Xn] can be generated by n elements. In this short note we sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 2008
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm113-1-9